Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress.

نویسندگان

  • Hans-Joachim Schnittler
  • Bernd Püschel
  • Detlev Drenckhahn
چکیده

The role of cadherins and the cadherin-binding cytosolic protein plakoglobin in intercellular adhesion was studied in cultured human umbilical venous endothelial cells exposed to fluid shear stress. Extracellular Ca2+depletion (<10-7 M) caused the disappearance of both cadherins and plakoglobin from junctions, whereas the distribution of platelet endothelial cell adhesion molecule 1 (PECAM-1) remained unchanged. Cells stayed fully attached to each other for several hours in low Ca2+ but began to dissociate under flow conditions. At the time of recalcification, vascular endothelial (VE) cadherin and β-catenin became first visible at junctions, followed by plakoglobin with a delay of ∼20 min. Full fluid shear stress stability of the junctions correlated with the time course of the reappearance of plakoglobin. Inhibition of plakoglobin expression by microinjection of antisense oligonucleotides did not interfere with the junctional association of VE-cadherin, PECAM-1, and β-catenin. The plakoglobin-deficient cells remained fully attached to each other under resting conditions but began to dissociate in response to flow. Shear stress-induced junctional dissociation was also observed in cultures of plakoglobin-depleted arterial endothelial cells of the porcine pulmonary trunk. These observations show that interendothelial adhesion under hydrodynamic but not resting conditions requires the junctional location of cadherins associated with plakoglobin. β-Catenin cannot functionally compensate for the junctional loss of plakoglobin, and PECAM-1-mediated adhesion is not sufficient for monolayer integrity under flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion.

Desmosomes are unique intercellular junctions in that they invariably contain two types of transmembrane cadherin molecule, desmocollins and desmogleins. In addition they possess a distinct cytoplasmic plaque structure containing a few major proteins including desmoplakins and the armadillo family member plakoglobin. Desmosomal cadherins are putative cell-cell adhesion molecules and we have tes...

متن کامل

P27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model

Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...

متن کامل

The Amino-terminal Domain of Desmoplakin Binds to Plakoglobin and Clusters Desmosomal Cadherin–Plakoglobin Complexes

The desmosome is a highly organized plasma membrane domain that couples intermediate filaments to the plasma membrane at regions of cell-cell adhesion. Desmosomes contain two classes of cadherins, desmogleins, and desmocollins, that bind to the cytoplasmic protein plakoglobin. Desmoplakin is a desmosomal component that plays a critical role in linking intermediate filament networks to the desmo...

متن کامل

Plakoglobin Suppresses Epithelial Proliferation and Hair Growth in Vivo

Plakoglobin regulates cell adhesion by providing a modulatable connection between both classical and desmosomal cadherins and their respective cytoskeletal linker proteins. Both plakoglobin and the related protein beta-catenin are posttranscriptionally upregulated in response to Wnt-1 in cultured cells. Upregulation of beta-catenin has been implicated in potentiating hyperproliferation and tumo...

متن کامل

Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin

E- and N-cadherin are members of a family of calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, the transmembrane cadherins self-associate, while, intracellularly, they interact with the actin-based cytoskeleton. Several intracellular proteins, collectively termed catenins, have been noted to co-immunoprecipitate with E- and N-cadherin and are thought...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 273 5  شماره 

صفحات  -

تاریخ انتشار 1997